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Abstract In this article, the relationship between fracture surface feature and

impact properties of poly(butylene terephthalate) (PBT) was investigated. The

results indicated that the fracture surface morphology of notched impact specimens

tested in the temperature range from 196 to 180 �C could be differentiated into

brittle (T B 20 �C) and ductile appearances (T [ 20 �C). The fracture surface

roughness was characterized by surface roughness ratio (Rs) and fractal dimension

(Db). The fracture mode significantly influenced the relationship between impact

strength and fracture surface roughness. When PBT fractured in a brittle mode, both

the measured values of Rs and Db could correspond to impact strength appropriately.

On the contrary, when PBT fractured in a ductile mode, their relationship became

not statistically significant because the area of the plastic deformation zone instead

of fracture surface roughness might be the major factor influencing impact strength.

Keywords Poly(butylene terephthalate) (PBT) � Fractography � Fracture surface �
Roughness � Impact strength

Introduction

Poly(butylene terephthalate) (PBT) is one of the known thermoplastics that

have vast applications in automobile industry, electronics, and electrical appliances

[1–10]. PBT is a strong and highly crystalline engineering plastic with excellent

P. Du � Y. Song � Q. Zheng (&)

Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China

e-mail: zhengqiang@zju.edu.cn

P. Du � B. Xue � Y. Song � S. Lu � J. Yu (&) � Q. Zheng

National Engineering Research Center for Compounding and Modification of Polymeric Materials,

550014 Guiyang, China

e-mail: polymerzju@126.com

123

Polym. Bull. (2010) 64:185–196

DOI 10.1007/s00289-009-0199-8



comprehensive properties such as high impact strength, short mold cycles, and low

molding temperature. Due to superior properties, PBT has attracted significant

interest both in industry and academia. A number of studies have been conducted on

the structure and properties of PBT. However, the relationship between the fracture

surface morphology and toughness as well as the failure mechanisms need to be

further investigated. The aim of this work was to investigate the relationship

between fractography feature and impact strength of PBT.

Fractography is widely used in failure analysis to identify where the fracture

originated, how it propagated, and whether it was brittle or ductile. The fracture

surface represents the culmination of deformation and final separation and often

provides clues to the toughness of materials. A considerable amount of information

has been reported on the appearance of fracture surfaces formed by crack

propagation in polymers by optical interferometry and scanning electron micros-

copy (SEM) [11–22]. It is found that there are several distinct patterns on fracture

surfaces, such as radial striations, regularly spaced ‘‘rib’’ markings, irregular

‘‘mackerel’’ or ‘‘patch,’’ and parabolic shape patterns. Fracture surface morphology

and roughness are often related to material toughness [23–25], which have been

quantitatively characterized [26–33].

In the present study, a fractographic approach was used to gain insight into how

the failure mode of PBT changed with temperature. The fracture surface

roughness was characterized by surface roughness ratio (Rs) and fractal dimension

(Db). The relationship between fracture surface roughness and impact strength was

discussed.

Experimental

Materials

A commercially available grade of PBT (product name: S3130) produced by Yi

Zheng Chem. Com., Jiangsu, China was used. The PBT was dried at 70 �C in a

vacuum oven for 6 h, followed by injection molding into Izod impact specimens.

Specimen geometry and dimensions used in this study are shown in Fig. 1.

Fig. 1 Dimensions of a notched
impact specimen according to
GB/T1843-1996 (Note:
L = 80 mm, B = 4 mm,
W = 10 mm)
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Impact fracture

Specimens were put in a thermostatic container for 25 min before tests. The

specimens were then taken out and tested quickly. The Izod impact tests were

carried out using ZBC-4B equipment. The notched specimens were subjected to the

impact test in the temperature range from -196 to 180 �C. At least eight specimens

for each condition were tested to reduce scattering error.

Morphological characterization

The fracture surfaces of Izod impact tested specimens were studied using a KYKY-

2800B scanning electron microscope (SEM) immediately after coating gold for

about 30 s to minimize electrostatic charging.

Quantitative investigation of fracture surface roughness

Measurement of Rs

Quantitative micro-measurements of fracture surface roughness were performed

using the secondary electron line (SELS) method [34–39]. Here, two stereological

parameters are considered useful for the characterization of fracture surface

roughness [30, 34]. Profile (linear) roughness ratio, RL, was defined as length of the

profile line, L, divided by the projected length of the profile line, L0

RL ¼ L=L0 ð1Þ

Surface roughness ratio, Rs, was defined as true fracture surface area, S, divided by

the apparent projected area, S0

Rs ¼ S=S0 ð2Þ

Much effort has been spent on developing relationship between Rs and RL. A linear

relation commonly used is [28–30]

Rs ¼ 4=pðRL � 1Þ þ 1 ð3Þ
It is known that the profile obtained by the SELS method is not only the

presentation of the real fracture profile, but also reflects the variation of the tilt angle

of the fracture surface to incident electron beam at the scanning position. The

variation of the tilt angle relevant to the different positions of the fracture surface

does reflect the degree of roughness of the fracture surface. Accordingly, the

roughness parameter Rs measured by the SELS method can be used to characterize

fracture surface roughness quantitatively.

According to previous researches [28, 36], we examined RL from the fracture

surface at a magnification of 910, and for each fractured surface, eight scanning

lines were taken along two perpendicular directions. Figure 2 shows the position for

determining surface roughness ratio and Fig. 3 gives an example for a secondary

electron scanning line taken from a fractured surface. Three scanning lines were
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taken along the y-direction: x1 and x3 were located 1 mm away from the edge, and

x2 passed the center of the initiation zone (as shown in Fig. 3a). Five scanning lines

(y1–y5) were taken along the x-direction, which was 1, 2, 3, 4, and 5 mm apart from

the notch individually. The micrographs of the scanning lines (as shown in Fig. 3b)

were digitized with image processing software (Image Pro-plus software). The RL

value was taken as the average of the data evaluated from all the scanning lines on

the same fractured surface and the Rs value was calculated from Eq. 3.

Fig. 2 a Sketch for the determination of the surface roughness ratio. b The detailed line-scanned
locations on the fracture surface

Fig. 3 a An example of a
secondary electron scanning line
taken from a fractured surface.
b Measurement of L and L0
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Measurement of Db

Fractal dimension, Db, which has been introduced to materials science as a

characteristic of rough boundaries of objects, can reflect the fracture surface

roughness. There are many definitions and different techniques that can be used to

estimate the fractal dimension of a fracture surface or profile [27, 28, 34, 39, 40]. In

this research, Db was determined from the SEM photographs using Fractalfox

software according to the box-counting method.

Results and discussion

Fractographic analysis

Figures 4, 5, 6, and 7 show SEM micrographs of the samples fractured at -40, 100,

140, and 180 �C, respectively. Figure 8 outlines different fracture modes. At low

temperatures (T B 20 �C), notched PBT fractured in a brittle manner and exhibited

macroscopically brittle features (Fig. 8a). Three primary zones could be defined as

the initiation zone, the crack propagation zone, and the rapid fracture zone. The

crack propagated from left to right on the figures. The fracture initiation zone 1 had

Fig. 4 Scanning electron micrographs of the fracture surface of PBT impacted tested at -40 �C. a The
overall view of the fracture surface: 1. the initiation zone, 2. the crack propagation region, and 3. the rapid
fracture zone; b a higher magnification of 1; c a higher magnification of 2; d a higher magnification of
radial striations in (b)
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a craze-like brittle appearance (Fig. 4c). The breakdown of the craze initiation zone

led to the crack propagation zone. In the crack propagation zone (Fig. 4b, d), radial

lines emanated from the initiation zone in all directions. At the end of crack

propagation zone there was always river-like morphologies (Fig. 4a), which

corresponded to the rapid fracture zone.

Fig. 5 Scanning electron micrographs of the fracture surface of PBT impacted tested at 100 �C: a the
overall view of the fracture surface: 1. the initiation zone, 2. the crack propagation region, and 3. the rapid
fracture zone; b a higher magnification of 2

Fig. 6 Scanning electron micrographs of the fracture surface of PBT impacted tested at 140 �C. a The
overall view of the fracture surface: 1. the initiation zone, 2. the crack propagation region, and 3. the rapid
fracture zone; b a higher magnification of 1; c a higher magnification of 2
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At temperatures from 20 to 100 �C (Fig. 8b), the general fracture morphology

was similar to those obtained at lower temperature (T B 20 �C), except that the

overall fracture surface was smoother (Fig. 5a) and numerous curled broken fibrils

could be observed on the striations in a high magnification view of the crack

propagation zone (Fig. 5b), which illustrated plastic deformation produced.

As high temperatures (T [ 100 �C), the three primary zones could still be

identified. However, the fracture surface morphologies in these three zones were quite

different from those at low temperatures (Fig. 8c). The size of the initiation zone

increased with increasing temperature. Feeble river-like or chevron markings can be

seen in Fig. 6a, c, which were highly sheared region involving tearing of presumably

amorphous part of PBT. The chevron markings were characterized by shallow ridges

and valleys. Existence of ductile appearance implied some much greater irreversible

plastic deformation must have occurred at the crack tip leaving these residual markings

on the fracture surface. The initiation zone was followed by the crack propagation zone

with numerous secondary features. As temperature increased, the secondary

morphology changed from parabolic to circle patterns (Figs. 6b, 7b, d), because the

ratio of crack velocity to secondary crack velocity was increased [21]. Furthermore,

much more highly stretched fibrils were observed (Fig. 7c). At the end of crack

propagation zone there was a stick–slip line (Fig. 6a), which could be regarded as the

boundary between the crack propagation zone and the rapid fracture zone.

Fig. 7 Scanning electron micrographs of the fracture surface of PBT impacted tested at 180 �C. a The
overall view of the fracture surface: 1. the initiation zone, 2. the crack propagation region, and 3. the rapid
fracture zone; b–d a higher magnification of 2
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In general, fractography analysis showed that there was a transition from brittle to

ductile as temperature increased. As sketched in Fig. 8, the main fracture surface

morphology changed from radial lines (brittle features) to radial lines with fibrils

(mixed features) and finally to secondary patterns with numerous fibrils (ductile

features).

Fracture mechanism

Semicrystalline PBT is composed of crystalline and amorphous phases. When the

test temperature (T B 20 �C) is below its glass transition temperature (40 �C),

deformation within the amorphous phase becomes restrained. The crystals have less

freedom to reorient due to the reduced mobility of the amorphous regions. The

material fails by bond rupture with little plastic deformation and the fracture surface

exhibits brittle features.

At temperatures near (T [ 20 �C) and especially above the glass transition

temperature, a thermally activated rearrangement may occur during the impact

loading process. When temperature is further increased, the plastic deformation of

Fig. 8 Sketch for PBT fracture surface of different fracture modes showing 1. the initiation zone, 2. the
crack propagation region, and 3. the rapid fracture zone. a Brittle fracture surface, b mixed mode fracture
surface, and c ductile fracture surface
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the crystal blocks is encouraged. Individual crystal blocks are pulled out of the

crystal ribbons and polymer chains in the amorphous zone are easily pulled into

fibrils, leading to extensive stretching of the fibrils.

Relationship between impact strength and the fracture surface roughness

Values of Rs and Db and notched Izod impact strength (ri) of PBT in the

temperature range from -196 to 180 �C are shown in Table 1. The trend of Rs

changing with temperature was similar to that of Db. Figures 9, 10 show ri as a

function of Rs and Db, respectively, at low temperatures (T B 20 �C). Both figures

indicate that ri increases with increasing fracture surface roughness (Rs and Db). At

high temperatures, plastic deformation occurred and absorbed a large amount of

energy; ri did not show any correlation with Rs and Db. Thus, the relationship

between fracture surface roughness and impact strength was significantly influenced

by the fracture mode.

The toughness of a material is generally related to the energy dissipating events

that occur in the vicinity of a sharp crack [38]. The total impact energy of fracture

will approximately transfer into three components: the flying energy after fracture

(Ek), the initiation energy of crack (Ei), and the propagation energy of crack (Eg).

According to the former study [28], ri can be expressed by

ri ¼ ðEk þ Ei þ EgÞ=A ¼ ðEk þ Ei þ c � sþ cp � vÞ=A

¼ ðEk þ Ei þ c � ARs þ cp � vÞ=A ð4Þ

where A is apparent fracture surface area, c is fracture surface energy, s is true

fracture surface, cp is average energy of plastic deformation per unit volume, and v
is volume of plastics zone.

Under the same root radius, the test temperature exercises few influence on Ei so

that Ei can be considered as a constant. Ek occupies a very small proportion in the

Table 1 Values of the surface roughness parameter and impact strength at various temperatures

T (�C) Average Rs Db ri (kJ/m2)

Low temperatures

-196 15.56 1.41 3.58

-60 16.20 1.47 3.70

-40 16.25 1.66 3.89

-20 16.51 1.69 3.99

0 16.73 1.75 4.35

20 17.39 1.79 4.59

High temperatures

60 18.83 1.89 5.92

100 10.95 1.58 8.43

140 13.95 1.67 17.88

180 16.98 1.85 14.75
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total energy and it can also be considered as a constant. As a result, ri can be written

into the specific terms

ri ¼ C þ c � Rs þ cp � v=A; ð5Þ

where C is a constant. At low temperatures (T B 20 �C), PBT fractured in a brittle

manner so that v was considerably small. Equation 5 could thus be reduced to

ri ¼ C þ c � Rs ð6Þ

Equation 6 could well account for the increase of ri as a function of Rs as shown in

Fig. 9.

At high temperatures (T [ 20 �C), PBT fractured in a mixed mode or ductile

mode accompanied by serious plastic deformation. A great deal of impact energy

Fig. 9 Plot of impact strength versus Rs at low temperatures

Fig. 10 Plot of impact strength versus Db at low temperatures

194 Polym. Bull. (2010) 64:185–196

123



dissipated at the regions of plastic deformation as the crack propagated. Under this

circumstance, the propagation energy takes a leading role in the total energy, and

the initiation energy which can be considered as a constant just occupies a quite

small proportion. Therefore, the variation of ri mainly depends on the area of plastic

zone, which explains why ri has no correlation with Rs and Db at high temperatures.

Conclusions

The fracture surface morphology of PBT notched impact specimens tested in the

temperature range from -196 to 180 �C could be differentiated into brittle

(T B 20 �C) and ductile appearances (T [ 20 �C). Fracture mode significantly

influenced impact strength ri as a function of Rs and Db. When PBT fractured in a

brittle mode, the measured values of Rs and Db could correspond to the impact

strength appropriately. On the contrary, when PBT fractured in a ductile mode, the

relationship between ri and fracture surface roughness was not statistically

significant, because the area of plastics deformation zone instead of fracture

surface roughness became the major factor influencing impact strength.
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